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The influence of magnetic and geometric parameters on the carrying capacity of a magnetofluid support con-
sisting of a cylindrical bushing and a journal suspended in a linearly magnetizable fluid has been investi-
gated. The existence of the absolute maximum of a hydrostatic buoyancy force for the optimum relation of the
bushing and journal radii has been found. Simple interpolation formulas which describe the dependence of the
characteristics of the maximum on the susceptibility of the fluid with an accuracy sufficient for technical cal-
culations have been obtained.

Introduction. Forces of magnetic origin that are comparable to the gravity force and may significantly exceed
it in certain cases act on bodies suspended in a magnetic fluid in the presence of a magnetic field. This effect finds
application in hydrostatic supports (a solid body is stably suspended inside the volume of a fluid with a lower den-
sity), separators (separating an ore for the density), and other devices [1–4]. Magnetic hydrostatic forces depend in a
complicated manner on the geometric and magnetic characteristics of bodies. The range of problems for which the
analytical dependences have been obtained is very limited [5–8]. In particular, the problem is easily solved if the di-
mensions of a body are smaller than the characteristic dimension of the inhomogeneity of a field (i.e., than the dimen-
sions of the field source) and if the disturbances introduced by a small body are insignificant as compared to a
magnetizing field. In this case, the magnetic force, just as the Archimedes force, depends only on the volume of the
body, not on its shape, and its value and direction are determined by the gradient of the magnetizing field. This ap-
proximation solves, in the main, the problem of calculation of magnetofluid separators in which the magnetic force
acts on the particles of a crushed material. The force-to-volume ratio (which may exceed hundreds of times the density
of gravity forces), not the force itself (which is insignificant because of the smallness of the particles), is of crucial
importance for these devices.

The carrying capacity of a magnetofluid support is determined by the absolute value of the force. In this
case, the body is not small in the sense indicated above, and its volume is comparable to the volume in which the
field is produced; consequently, not only does the magnetic buoyancy force depend on the gradient of the field and
the volume of the suspended body but it also depends on its geometric features. The regularities of these depend-
ences have not been adequately developed at present. The results of investigation of spherical bodies in a magnetic
fluid in the approximation of a low magnetic susceptibility have been presented in [9]. An important result of this
work was finding the existence of an optimum relation of the radii of a magnet and an external magnetic sphere,
for which the force reaches its absolute maximum, which is important for designing magnetofluid supports, bearings,
and suspensions. It would appear natural that such a maximum must exist in the case of cylindrical geometry, too.
The solution of the cylindrical problem has been considered in [2, 6], but this property of the force has not been
noted there.

The present work seeks to numerically investigate the extremum properties of the force with the use of the
model of [6] and to construct simple interpolation formulas which will enable us to calculate the carrying capacity of
a cylindrical magnetofluid support.

General Formulation of the Problem on Interaction of Magnets and Nonmagnetic Bodies in Magnetic
Fluids. The equilibrium pressure distribution in magnetic fluids will be written as [1, 2]
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p = p0 − ρg (z − z0) + µ0 ∫ 
H0

H

M (H) dH . (1)

The force acting on a body on the source side of a fluid is determined as the integral of forces distributed on the sur-
face of the body S. For a nonmagnetic body in a magnetic fluid, this integral has the form [1, 2]

F = − �
S

 

p + 

1
2

 µ0 (Mn)2

 ndS , (2)

where n is the vector of the external normal to the portion of the surface dS. The second term in the integrand is de-
termined by the jump of Maxwell stresses in crossing the boundary of media with different magnetic properties.

In integrating over a closed surface, coordinate-independent components in the pressure distribution yield a re-
sultant force equal to zero. In integrating, hydrostatic pressure due to the gravity force gives rise to the Archimedes
force, which will be not considered subsequently for the sake of brevity. Thus, we assume that p in (2) represents only
the magnetofluid pressure whose resultant action leads to an ejection of the body in the direction of decrease in the
field. The force (2) is appropriately defined in this case as the magnetic buoyancy force.

Whereas nonmagnetic bodies are capable of floating under the action of the lifting force produced by the in-
homogeneous external field, magnetic bodies are capable of self-levitating since they themselves are the sources of a
magnetic field. A magnet placed in a vessel with a magnetic fluid tends to occupy a stable position under the action
of the force that is also determined by expression (2).

To compute (2) we must know the equation of magnetization of a magnetic fluid. The Langevin dependence
may be used in the general case. However, in solving the hydrostatic problem, it is more efficient to use the linear-
fractional approximation [10], which enables us to obtain the analytical expression for the integral (1):

p = µ0 ∫ 
H0

H
MsHdH

Hh + H
 = ph 
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




 , (3)

where Ms and Hh are the saturation magnetization and the halved-magnetization field dependent on the kind of fluid
(the saturation magnetization may attain values of the order of 100 kA/m, whereas the values of the halved-magneti-
zation field lie in a comparatively narrow range (5–15 kA/m)) and ph = µ0MsHh is the characteristic pressure.

To obtain the field distribution as a function of the coordinates we must solve a system of magnetostatic
equations. Thereafter we may compute the integral (2) determining the force as a function of the geometric and mag-
netic parameters.

Analytical Model of a Cylindrical Magnetofluid Support. For analysis of the influence of the magnetic sus-
ceptibility of the fluid on the extremum characteristics of interaction of bodies in a cylindrical support, we use the
analytical solution of the problem [6] whose geometry is presented in Fig. 1.

A cylindrical journal of radius R2 is in a cylindrical nonmagnetic bushing of radius R1 filled with mag-
netizable fluid with a constant magnetic susceptibility χ. The journal and bushing axes are parallel to each other but
are spaced r0 apart. The journal is uniformly magnetized perpendicularly to the axis; its magnetization is equal to Mf.
We assume that the length of the bushing and the journal is much larger than their diameters, so that the geometry of
the problem is considered to be plane. For reasons of symmetry of the field distribution, the force acting on the jour-
nal will only have an x component, which is found by integration of the forces of magnetofluid pressure p and Max-
well stresses σn over the contour L enclosing the journal. In the case of the linear law of magnetization of the fluid
M = χH, we may express the force acting on the magnet by the formulas

Fx = �
L

 (pn + σn) idL = µ0µl �
L

 

HxHn − 

1
2

 H
2
 nx



 dL ,   µ = χ + 1 , (4)
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σn = µ0 

HBn − 

1
2

 H
2
n

 ,   p = µ0χ ∫ 

0

H

HdH = 
1
2

 µ0χH
2
 , (5)

where n is the vector of the normal to the contour and i is the unit vector of the x axis.
From the magnetostatic equations, it follows that the field intensity in all three regions is expressed by the

magnetic potential H = −∇ϕ whose distribution is described by the Laplace equation

∇2ϕ = 0 . (6)

On the journal and bushing surfaces, the conditions of continuity of the normal components of magnetic induction B
= µ0(H + Mf) and the tangential components of field strength are observed:

Bn1 = Bn2 ,   Hτ1 = Hτ2 . (7)

The solution of problem (4)–(7) for the geometry presented in Fig. 1 is conveniently sought in a bipolar coordinate
system [6]. The Cartesian coordinates are related to the bipolar coordinates α, β by the formulas

x = 
R2 sinh α2 sinh α

cosh α + cos β
 ,   y = 

R2 sinh α2 sin β
cosh α + cos β

 . (8)

Let us assume that the coordinate surfaces α = α1 and α = α2 coincide with the surfaces of the bushing and
the journal respectively. Bipolar representation of the field makes it possible to express the force (4) in the form

Fm = 
Fx

F∗
 = 

χ (χ + 1)

(2 + χ)3
 fm , (9)

fm = sinh α2 ∑ 

k=0

∞

2k

2
dkck − k (k + 1) (ckdk+1 + dkck+1) .

Here F∗ = 4πµ0Mf
2R2l is the quantity selected as the characteristic force scale;

Fig. 1. Geometry of the problem: 1) bushing; 2) journal; 3) magnetic fluid.
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dk = 
exp (− 2k (α2 − α1))
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 exp (− 2k (α2 − α1))

 ;

cosh α1 = 
1 − b

2
 + a

2

2a
 ;   cosh α2 = 

1 − b
2
 − a

2

2ab
 ;

b = 
R2

R1
 ,   0 < b ≤ 1 ;   a = 

r0

R1
 ,   0 < a ≤ 1 − b .

(10)

According to (9)–(10), the dimensionless force is a function of the dimensionless parameters: the magnetic
susceptibility of the field χ and the radius of the journal b and the displacement a of its center from the center of the
bushing, which have been made dimensionless by means of the radius of the bushing.

A numerical analysis of problem (9)–(10) has shown that certain significant features of the dependence of the
force on its arguments in [6] remain to be revealed. It has been established that the maximum value of the force Fm
attained for the limiting displacement of the journal a = 1 − b in the case of spherical contact [9] has an absolute
maximum Fm

∗  (optimum force in what follows), when the relation b∗ of the radii is optimum [11].
Figure 2 gives the dependences of the function fm on the ratio b for the maximum displacement of the jour-

nal, which illustrate the properties of the force Fm. These dependences, as would be expected, have a maximum whose
characteristics fm

∗  and b∗ are dependent on the susceptibility of the fluid χ. When the values of the susceptibility are
low (χ < 0.1), the optimum ratio is b∗ → 0.5 and fm

∗  = 0.149. The dimensionless force fm
∗  increases indefinitely with

indefinite increase in χ; here, b∗ → 1. Thus, as χ varies in a wide range, the optimum values of the parameter b lie
within 0.5 < b∗ < 1. The character of the dependence b∗(χ) is shown in Fig. 3. We note that the initial and final por-
tions of the b∗(χ) curve have asymptotes.

Investigation of the extremum properties of the force according to model (9)–(10) is nontrivial. When the cyl-
inders are in contact, the formulas of the bipolar coordinates lose their meaning; therefore, we must find fm from the
asymptotic dependence of the force on the displacement. Furthermore, by virtue of the mathematical peculiarity, the
number of terms making a substantial contribution to the sum (9), as the journal approaches the bushing, indefinitely

Fig. 2. Function of the maximum strength fm vs. ratio b of the radii of the
journal and the bushing for low (a) and high (b) values of the magnetic sus-
ceptibility of the fluid: 1) χ = 0.1; 2) 1; 3) 100; 4) 200.
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increases. Therefore, construction of simple interpolation formulas reflecting the dependence of the force on its argu-
ments is an important objective of study of model (9)–(10).

Interpolation Model for Calculation of the Limit of the Carrying Capacity of a Cylindrical Magneto-

fluid Support. For the sake of convenience, we represent the approximation of the dependence b∗(χ) (Fig. 3) in the

χ

∆b∗
(χ) coordinates (Fig. 4), where it has an asymptote. For high values of χ, we have the dependence

b
∗
 = 
χ + 1.58

χ + 3.16
 ,   χ ≥ 20 . (11)

In the region χ ≤ 20, we may propose the formula

b
∗
 − 0.5
bc

 = 

ν − 1 − 
χ
χc

 + √


ν + 1 + 

χ
χc





2
 − 4ν

2ν (12)

with the parameters χc = 0.79, ν = −10.27, and bc = 0.45. We can replace Eq. (12) on the portion 0 < χ < 1 by the
simpler equation

b
∗
 = 0.5 (1 + 0.1χ) . (13)

Table 1 compares the results of calculation of b∗(χ) from (11) and (12) to the results of model (9)–(10). The
maximum error in using Eqs. (11) and (12) in the specified ranges of χ is no higher than 2%.

The dependence of the optimum force on the susceptibility, which is presented in Fig. 4 and has been calcu-
lated from (9) and (10), shows that, for high χ values, the function Fm

∗ (χ) has an asymptote described by the formula

Fm
∗

 = (χ + 3.7) ⁄ 209 (14)

on the portion χ > 10.
The error of computations of εF from (14) in the above range of χ is no higher than 1.5% as compared to

(9)–(10) (see Table 1, (14)).
For the portion χ < 10 we may propose an interpolation formula describing the calculated data (9)–(10) accu-

rate to 5%:

Fig. 3. Optimum ratio of the radii b∗ vs. magnetic susceptibility χ.

Fig. 4. Parameter χ ⁄ ∆b∗ and optimum value of the force Fm
∗  vs. magnetic sus-

ceptibility χ.
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Fm
∗

Fc
 = 

2χν

ν − 1 − 
χ
χc

 + √


ν + 1 + 

χ
χc





2

 − 4ν

 ⋅ 10
−2

 , (15)

where ν = 1.185, χc = 32.3, and F = 0.298 (see Table 1, (15)).
It is problematic to obtain the asymptotics by exact solution of (9)–(10) for χ → 0. From the viewpoint of the

difficulty of accurate calculation, the magnetic force may be divided into two components: the "external" force calcu-
lated from the field of the magnet (noninductive approximation) and the "self-action" force due to the field induced by
the fluid. However, in the case χ << 1 the calculation of the magnetic force in the noninductive approximation is jus-
tified [2]. In this approximation, the magnetofluid pressure in (3) is only expressed by the distribution of the magnet’s
field; the second term (magnetic pressure jump on the body’s surface) may be disregarded, since these assumptions in-
troduce errors of the order of χ2.

In the noninductive approximation, the force acting on the journal for low values of the magnetic susceptibil-
ity χ → 0 is equal to

Fm = 
χ
8

 ⋅ fm ,   fm = 
(1 − b)

(2 − b)3
 . (16)

From the extremum condition 
dfm

db
 = − 

1 − 2b

(2 − b)4
 = 0, we find the optimum ratio of the radii b∗ = 0.5 and the optimum

force acting on the magnet, fm
∗  = 0.148 and Fm

∗  = 1.85⋅χ⋅10−2.

Calculation of fm from formula (16) for χ ≤ 0.1 yields the coincidence with the result obtained from formulas
(9)–(10) in the entire range 0 < b < 1. The computational error increases with parameter χ. When χ = 1, the disagree-
ment between fm

∗  values computed from formulas (9)–(10) and (16) attains 16%.

TABLE 1. Approximation of the Dependences b∗(χ) and Fm
∗ (χ) by Different Formulas

χ b∗ Fm
 ∗(χ)⋅102 εF, %

(9)—(10) (11) (12) (9)—(10) (14) (15) (14) (15)

0.1 0.501 0.515 0.505 0.177 1.818 0.176 927 0.5
0.2 0.505 — 0.510 0.338 — 0.331 — 2
0.3 0.507 — 0.515 0.481 — 0.471 — 2
0.4 0.510 — 0.520 0.626 — 0.600 — 4
0.5 0.517 — 0.525 0.755 — 0.722 — 4.4
0.6 0.520 — 0.530 0.878 — 0.836 — 4.8
0.7 0.530 — 0.535 0.993 — 0.945 — 4.8
0.8 0.535 — 0.540 1.103 — 1.049 — 4.9
0.9 0.545 — 0.545 1.208 — 1.149 — 4.9
1.0 0.55 0.62 0.55 1.308 2.249 1.246 71.9 4.7
4 0.71 0.78 0.69 3.408 3.684 3.405 8.1 0.09
7 0.80 0.84 0.80 5.000 5.120 5.033 2.4 0.70
9 0.84 0.87 0.85 6.004 6.077 6.000 1.2 0.07

19 0.92 0.93 0.92 10.856 10.861 10.208 0.05 6
49 0.97 0.97 0.94 25.231 25.215 20.820 0.06 17.5
79 0.98 0.981 0.945 39.596 39.569 30.551 0.07 22.8
100 0.984 0.985 0.946 49.165 49.139 36.852 0.05 25
200 0.992 0.992 0.948 97.476 97.464 67.840 0.01 30

325



The calculations carried out make it possible to obtain a theoretical limit for the carrying capacity of magne-
tofluid supports. From formulas (9)–(10), we have

p
_
 = 

Fx

2R2l
 = 

F∗Fm
∗

2R2l
 = 5⋅10

6
 (µ0Mf)

2
 Fm
∗

for the reduced force (referred to unit area of the longitudinal section of the journal).
The real value for the induction of the magnet is µ0Mf C 0.8 T. The optimum dimensionless force Fm

∗  is de-
termined from formulas (14)–(16). Since we have χ < 4 for the majority of existing magnetic fluids, the theoretical
limit for the reduced force will be 0.11 MPa (χ = 4). We note that this value is technically unattainable at present
because of the absence of magnetic fluids with a magnetic susceptibility of χ D 4, which possess the necessary colloi-
dal stability for B C 0.8 T. Commercial magnetic fluids have χ D 1–2, as a rule, which makes it possible to ensure the
carrying capacity of a cylindrical magnetofluid support at a level of 0.04–0.07 MPa.

Conclusions. A fundamental result of the numerical investigation of the analytical solution of the problem on
calculation of the force of magnetic levitation of a cylindrical magnet in a nonmagnetic cylindrical bushing filled with
the linearly magnetizable fluid is the existence of the optimum ratio of the radii of the bodies for which this force
attains its absolute maximum (optimum force). The characteristics of the maximum are dependent on the susceptibility
of the fluid. The optimum force indefinitely increases with indefinite increase in the susceptibility; the optimum ratio
of the radii of the bodies varies from 0.5 to 1. This is of importance in technology for creation of supports, suspen-
sions, vibration dampers, and dampers. However, the mathematical complexity of the formula makes it problematic to
practically implement it even with the use of a computer.

The interpolation formulas proposed describe the dependence of the characteristics of the maximum on the
susceptibility of the fluid with an accuracy sufficient for technical calculations and substantially simplify the procedure
of calculation of the limit of the carrying capacity of cylindrical magnetofluid supports.

NOTATION

B, magnetic induction, T; F, magnetic buoyancy force, N; g, free-fall acceleration, m/sec2; H, magnetic-field
intensity, kA/m; H0, magnetic-field intensity at the point (x0, y0, z0); l, journal length; M, magnetization of the mate-
rial, kA/m; Mf, magnetization of the magnet, kA/m; p, pressure, Pa; p0, pressure at the point (x0, y0, z0), Pa; r0, dis-
placement of the journal axis from the bushing axis, m; R1, radius of the cylindrical bushing, m; R2, radius of the
cylindrical journal, m; x, y, z, Cartesian coordinates; µ, magnetic permeability of the material; µ0, magnetic permeabil-
ity of the vacuum; ρ, density of the magnetic fluid, kg/m3; χ, magnetic susceptibility of the material. Subscripts: f, fer-
romagnetic; s, saturation state; h, halved magnetization of the material; *, characteristic value; m, maximum value.
Superscript: *, optimum value.
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